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SUMMARY

Battery aging diagnosis using field data readouts presents distinct
challenges compared with using laboratory data. These challenges
stem from the complexity of the data structure and potential incon-
sistencies in aging values obtained from variations in battery man-
agement system software versions. Consequently, the efficacy of a
data-driven approach to identify pertinent aging features from field
data becomes susceptible to these factors. In this work, we investi-
gate different feature extractionmethods and propose a framework
designed to mitigate issues arising from compromised data quality.
For this purpose, we leverage the benefits of precise laboratory
aging data alongside authentic driving data acquired from a cohort
exceeding 600,000 customers to improve the aging diagnosis
of vehicle batteries. Moreover, we provide functional fitting of
statistical data, addressing the challenges posed by incomplete
data structures. We validate our methods by comparing them with
state-of-the-art feature extraction techniques, yielding a 57%
enhancement in aging estimation accuracy.
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INTRODUCTION

Lithium-ion batteries have emerged as the first choice for large-scale energy storage

in the automotive sector, effectively meeting demanding technical prerequisites like

high power and energy density, coupled with long calendar and cycle life capacity. In

particular, the durability of batteries poses a critical challenge for original equipment

manufacturers (OEMs), who must ensure sustained battery performance for

customers.1,2 As such, the state of health (SOH), commonly defined by capacity

fade and the inner resistance increase, serves as an indicator of the battery’s current

degradation level.

Accurate measurement of battery capacity and inner resistance necessitates offline

implementation, precluding their assessment during battery operation and

requiring controlled laboratory conditions. Consequently, estimation methods are

inevitable for integration into the battery management system (BMS).3 However,

multifaceted physicochemical reactions within lithium-ion batteries result in highly

nonlinear and complex aging behavior, making the estimation procedure a chal-

lenging task.4 These estimation methods fall into categories of experimental, model

based, and data driven. This paper focuses on the last. Given the BMS’s restricted

hardware resources, computationally intensive algorithms like neural networks and

electrochemical models are difficult to deploy for serial adoption. Therefore, algo-

rithms striking a balance between computational effort and estimation accuracy

are of paramount interest for onboard estimation.5,6
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Tomonitor aging during operation, OEMs collect battery data from the internal BMS

memory and send it to a global data pool for processing and analysis. To minimize

BMS memory usage and ensure lifelong data logging, measured signals are often

compressed into aggregated formats, such as binned histograms.7 These data

encompass measured variables (temperature, current, and voltage) and estimated

states such as SOH and state of charge (SOC), enabling comprehensive customer-

specific aging analysis. However, due to a limited storage capacity as well as

erroneous readouts, collected data require extensive preprocessing to filter out

unreliable information. Moreover, during a battery’s life cycle, updated BMS soft-

ware versions contain different estimation algorithms or an updated parametrization

of underlying models, providing inconsistent aging values over a battery’s lifetime.

In contrast, laboratory data, gathered under controlled testing conditions, provide

accurate aging data along with measured input signals over time but lack realistic

load patterns. Therefore, laboratory data fail to capture all customer operation

modes, providing insufficient information to identify appropriate features for a

customer-related data-driven aging estimation.

In this work, we propose a feature extraction framework for statistical field data read-

outs, automating the selection of aging features for diagnosis tasks. A feature serves

as an independent variable for regression and can be derived from the provided

driving data format obtained fromBMS readouts. This work presents established sin-

gle-correlation-based methods and introduces new dual-source correlation and

elementary function fitting algorithms. These leverage both field and laboratory

data to optimize feature selection. We use aging correlation coefficients calculated

from accurate laboratory data to select relevant aging features. In addition, we

employ these coefficients to guide the mapping of collinear features identified

through correlation matrices of the field data, thereby mitigating redundancies

within the feature set. This approach employs realistic load patterns from a field

database containing BMS readouts from a total of 600,000 customers alongside lab-

oratory aging data of the same cell chemistry. While various feature extraction ap-

proaches exist, this is the first work to combine the advantages of laboratory and

field data for enhanced diagnostic results.8–10

Our approach involves two key steps. First, aging features are statistically derived

from accurate SOH values obtained from laboratory data. This ensures that the

selected features are statistically meaningful and relevant for aging analysis. Sec-

ond, features are grouped based on real driving behavior, aiming to eliminate re-

dundancies and avoid duplication of information in the input data. The collected

field data from BMS memory are mainly available in binned histograms. For harmo-

nious compatibility, this necessitates that the laboratory data be molded into the

same format, thus guaranteeing uniformity in the sets of variables across both

data sources. Hence, as a first step, we transform measured time-series data into

the driving-data format of the field data. This foundation enables the subsequent

computation of Spearman correlation coefficients. Various aggregation methods

are then employed, delineating input features based on their correlation with bat-

tery aging, while also facilitating the grouping of features according to their collin-

earity. Furthermore, the dimensionality of each feature group is curtailed by utilizing

the partial-least-squares (PLS) method, effectively condensing redundant informa-

tion. Hence, the framework automatically ascertains the statistically optimal feature

set, bypassing the need for manual input construction. Finally, to authenticate the

efficacy of our proposed framework, a fully connected neural network is trained

using the extracted features from the laboratory data, serving as a validation of its

performance. The main contributions of this paper are as follows:
2 Cell Reports Physical Science 4, 101596, October 18, 2023
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� Correlation analysis and investigation of differences between field and labora-

tory data of 48 V lithium-ion batteries;

� Integration of field and laboratory data to combine advantages of both data

sources for estimation task;

� Investigation of feature extraction methods for histogram data toward aging

estimation;

� Data augmentation through the functional fitting of histogram variables.

The rest of the paper is organized as follows: ‘‘Field data’’ provides the collection

workflow of the field data as well as the variable structure a readout in the database

contains. Furthermore, the section ‘‘Laboratory data’’ covers the laboratory data of

the battery-aging tests and the transformation into the driving-data format of

collected customer data. In ‘‘Feature extraction framework,’’ a comprehensive

explanation of the framework is presented. The section ‘‘Validation’’ and the discus-

sion showcase and analyze the superior performance of the framework compared

with conventional correlation-based feature extraction methods.
RESULTS

Field data

For this investigation, collected data from a total of 600,000 customers were

analyzed to identify estimation capabilities from gathered inputs of the battery

SOH on the one hand and to assess differences among BMS estimation algorithms

on the other. This section explains the format of the collected field data as well as the

variables they contain. As a bridging technology, 48 V batteries are widely used in

vehicle applications. In mild-hybrid vehicles (MHEVs), they achieve substantial fuel

consumption savings at low system adoption costs by assisting the combustion

engine with boosting and recuperating, while in electric vehicles, they support the

12 V battery with high-current peaks, e.g., for roll stabilization systems.11 The battery

is composed of 20 high-power cells connected in series with a nickel-manganese-co-

balt (NMC)/lithium titanate oxide (LTO) chemistry and a nominal voltage of 2.4 V and

a beginning-of-life (BOL) capacity of 10 Ah. Such cells are designed for high C rates,

long cycle life, and low depth-of-discharge (DOD) rates, in contrast to high-energy

cells used in traction batteries of electric vehicles, which are operated with lower

C rates but high DODs.12 The BMS controls the battery operation through data

acquisition, state estimation, charge and discharge control, balance control, and

others.13 Moreover, data storage facilitates offboard fault diagnosis and is also of

great significance in analyzing operation conditions. Considering that data need

to be collected over multiple years of operation, compression methods are applied

to reduce data storage requirements.14 A readout from the BMS memory is either

event-based or time-based, triggered and sent over the air to a data collection

pool. The readout procedure can be found in a previous research paper.15 A row

in the customer database represents a full readout of the customer BMS memory,

which contains both measured (current, voltage, temperature) and estimated

(SOC, SOH) variables. With an average of 14.2 readouts per customer, the database

comprises data from 8.9 million readouts starting from July 2020. The collected vari-

ables mainly comprise aggregated data to optimize memory usage and ensure data

logging over the entire battery lifetime.

Table 1 gives an overview of available variables from the BMSmemory together with

their value and bin ranges, where two groups of available data can be distinguished:

single values and histogram values. The first represents the instantaneous value of a

signal at the time of a readout, such as the energy throughput, which has a maximum
Cell Reports Physical Science 4, 101596, October 18, 2023 3



Table 1. Selected memory variables from the BMS comprise single-value and histogram-value variables

Name Description Value range

Single values

SOH state of health at readout [0, 100] (%)

SOC state of charge at readout [0, 100] (%)

energy throughput total battery energy throughput until readout [0, 8,000] (kWh)

voltage battery voltage at readout [0, 70] (V)

current battery current at readout [�1,500, 1,500] (A)

temperature battery temperature at readout [�126, 126] (�C)

Histogram values

time soc x;x˛ ½1; 10� time spent in SOC range [0, 10, 20, ., 100] (%) [0, 232 � 1] (s)

time temperature x;x˛ ½1; 6� time spent in temperature range [¸0, 0, 20, ., >70] (�C) [0, 232 � 1] (s)

ðdisÞcharge temperature x;x˛
½1; 6�

(dis)charge in temperature range [¸0, 0, 20, ., >70] (�C) [0, 232 � 1] (Ah)

number dod x;x˛ ½1; 7� number of DODs in range [0, 1.1, 2.2, ., >9.9] (Ah) [0, 232 � 1] (counts
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value of 8,000 kWh, approximately equivalent to 9,000 full cycles. Another example

is the current with a maximum value of 1,500 A, equivalent to 150 C. Histogram

values include counters of binned signal intervals, which are updated during the

operation of the vehicle. Consequently, the histogram values are cumulative. For

example, time-based histogram bin values refer to the time spent by a battery in a

particular state parameter range, such as the variable time soc 1, which stores the

time in an SOC range of 0%–10%. To account for calendar aging during parking

phases, we updated the histogram data by integrating the start and stop values of

the respective variable over the parking time. In addition, every readout entry is

associated with a unique readout ID, a hashed vehicle ID, and the current software

version of the BMS. In the following, we will call this set of variables, representing

a snapshot of the battery history, the driving data format. The mileage of monitored

vehicles in the customer database ranges from new vehicles with 50 km up to older

ones with more than 130,000 km, and the number of equivalent full cycles of the 48 V

battery ranges from 0 to over 3,000.

Figure 1A illustrates the average SOH values over the equivalent full cycles of the

collected data for different climate conditions and software versions during battery

development. Every software version corresponds to a specific configuration of the

onboard aging model, which has to be kept confidential.

Here, the SOH is defined as follows:

SOHC = 100 $

�
1 � C0 � CðtÞ

C0

�
= 100$

CðtÞ
C0

; (Equation 1)
SOHR = 100 $

�
1 � RðtÞ � R0

R0

�
= 100$

�
2 � RðtÞ

R0

�
; (Equation 2)
SOH = 0:8$SOHR + 0:2$SOHC ; (Equation 3)

with SOHC as the capacity degradation and SOHR the inner resistance increase.

Since the battery is mainly exposed to high C rates together with low DODs, resis-

tance increase plays a higher role in the total SOH calculation. Accordingly, the

SOHR in Equation 3 weighs 80% and the SOHC represents the remaining 20% of

the overall battery SOH. As can be seen in Figure 1A, the calculated mean SOH tra-

jectories show quite strong oscillation, which is mainly due to the uneven sampling

time of vehicle readouts. Eventually, the SOH happens to increase once vehicle
4 Cell Reports Physical Science 4, 101596, October 18, 2023



A

D

C

B

Figure 1. Collected vehicle diagnostic data for three different climate regions

Left, cold climate; middle, moderate climate; right, hot climate.

(A) Mean SOH values and 95% confidence interval for collected vehicle data from different software versions.

(B) Histogram distribution of vehicle ages.

(C) Time histogram distributions in SOC ranges over vehicle age.

(D) Charge histogram distributions under different temperatures over vehicle age.
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readouts with lower SOH values are not available for the respective time step. More-

over, a discrepancy between the estimated aging behavior of different software ver-

sions is noticeable. Under cold climate conditions (left), software 4 (SW_4) estimates

a slower battery degradation than the remaining software versions, whereas, under

moderate conditions (middle), software 1 (SW_1) predicts a faster aging of the
Cell Reports Physical Science 4, 101596, October 18, 2023 5
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battery. The best congruence among software versions can be found under hot

climate conditions (right), providing similar aging trajectories. As a result, inconsis-

tent SOH values over the collected field data make a data-driven analysis of aging

features impractical. Figure 1B illustrates the distribution of vehicle ages in the

respective climate regions. Current throughputs from charging the battery under

different operating temperatures are illustrated in Figure 1D, where a clear shift of

the main temperature operating window among climate regions can be noticed.

Since cycling of the 48 V battery frequently alters due to boosting, recuperating,

and supporting the 12 V onboard electrical system, the accumulated currents of

charging and discharging are in very close range for every temperature bin.

To assess the estimation quality of a respective software version from collected field

data, accurate aging data are needed to provide reference values from accelerated

aging tests. Moreover, to understand better how to apply aggregated vehicle

diagnostic data for offboard aging estimation, we investigate feature correlations

from laboratory data in the following section.
Laboratory data

The laboratory data utilized for studying battery aging in various operating modes

comprise measurements obtained from calendar and cyclic aging tests. These tests

have been specifically designed to simulate high-power applications that experi-

ence high C rates while maintaining a low discharge depth.

The laboratory data utilized for studying battery aging in various operating modes

(temperature, SOC, DOD, etc.) comprise measurements obtained from calendar-

and cyclic-aging tests. These have been specifically designed to simulate high-po-

wer applications that face high C rates together with a low discharge depth.16 The

investigated cells contain an LTO/NMC chemistry with a nominal voltage of 2.4 V

and compose a battery from the field data with 20 cells connected in series to pro-

vide a 48 V voltage level. Tables S1 and S2 show the corresponding test matrices of

the calendar- and cycle-aging tests for a total of 25 individual cells. Main operation

points comprise tests at 60�C with an SOC range from 5% to 95% for the calendar

tests, as well as 5 C (dis)charging rates at 40�C for cyclic tests. Further information

about test design and analysis can be found in Bank et al.,17 including an in-depth

investigation of aging implications for 48 V battery systems.

After every 30 days for calendar tests and 500 equivalent full cycles for cyclic tests, a

checkup at 25�C is conducted to determine the aging progress. Therefore, a capac-

ity test is performed with a constant current of 1 C and also a pulse test at 2, 5, 10, 20,

and 25 C in discharge and charge directions to evaluate the inner resistance of the

cell. The cell capacity is determined by the total current count in the discharge direc-

tion and the cell inner resistance is computed by the measured resistances at 2 C

discharge pulses after 3 s. For a test duration range of 120–550 days and an equiv-

alent full-cycle range of 7,500–23,000 cycles, respectively, this yields 450 computed

values of capacity and inner resistance. Figure 2A shows the voltage curve of a

checkup test with the markings to determine the aging factors. Afterward, the final

SOH is computed using Equation 3 from the field data definition. In addition, to

increase the number of resulting data points, we apply a piece-wise linear interpo-

lation between two neighboring checkup tests and insert 10 query points for the

SOH. Although we do not increase the information content, this step is required

to provide enough data to a data-based model in the validation step later.
6 Cell Reports Physical Science 4, 101596, October 18, 2023
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Figure 2. Laboratory cell aging tests

(A) Cell voltage profile of checkup test to determine the aging factors. Capacity is measured at a 1 C full discharge (dashed box) and the inner resistance

at a 2 C discharge pulse after 3 s (circle).

(B) Resulting SOH values from calendar-aging tests after interpolation.

(C) Resulting SOH values from cyclic-aging tests after interpolation.
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Figures 2B and 2C show the aging trajectories of each cell of the calendar- and cyclic-

aging tests. The markers indicate the time steps of a checkup test, which also

represent the sample points of the linear interpolation. As illustrated, higher temper-

atures lead to a faster degradation of all cells. Moreover, higher storage SOCs foster

the aging of the calendar test cells. The measured data from the laboratory tests

represent accurate aging data together with time-series input signals. In contrast,

the collected field data comprise single and histogram values of real customer

behavior but, therefore, include inconsistent SOH values. Hence, as a first step to

identify possible aging factors from the field data, the laboratory data will be trans-

formed into the driving data format presented in the ‘‘Field data’’ section. Therefore,

at every checkup time step, current i, voltage u, and temperature T measurements

from all previous time steps are collected to compute the drive data format,

including all single and histogram values of the concatenated signals. In addition,

the SOC is calculated by accumulating charge and discharge currents (ampere-

counter method) together with voltage measurements during the checkup tests.

Therefore, at every checkup test, we assume a fully charged battery at 100% SOC

previous to the full discharge cycle to determine the battery capacity and construct

the SOC profile from the current measurements to the next checkup test. With the

measured laboratory time-series data, histogram- and single-value variables from

Table 1 can be computed for each cell together with an associated SOH value

from the corresponding checkup test or interpolation query point. With the sam-

pling time vector Dt, the charge vector Q+, and the discharge vector Q�,

Dt =

2
664

t1 � t0
t2 � t1

«
tn � tn� 1

3
775; (Equation 4)
Q+ = i$Dt;where i > 0; (Equation 5)
Q� = i$Dt;where i < 0; (Equation 6)

the following logical conditions apply to calculate the histogram variable values from

the time-series data18:

time soc x/
X

DtSOCl < SOC<SOCu ; (Equation 7)
Cell Reports Physical Science 4, 101596, October 18, 2023 7
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Figure 3. Distributions of the SOH and selected histogram features of the field and laboratory data

Solid lines represent mean values of histogram variables, the filled areas indicate 50% of the available data. See Figure S1 for the individual distribution

plots.

(A) SOH distribution of field data and calendar test data.

(B) Charge count over temperature bins of field data and calendar test data.

(C) Time count over SOC range of field data and calendar test data.

(D) SOH distribution of field data and cycle test data.

(E) Charge count over temperature bins of field data and cycle test data.

(F) Time count over SOC range of field data and cycle test data.
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timetemperaturex/
X

DtTl < T <Tu ; (Equation 8)
chargetemperaturex/
X

Q+
Tl <T <Tu

; (Equation 9)
discharge temperature x/
X

Q�
Tl < T <Tu

: (Equation 10)

The lower and upper parameter limits l and u define the bin range where a certain

condition is met and can be found in Table 1. Note that the sum of all the times spent

in each parameter range (SOC and temperature) must equal the total time elapsed

within that load pattern, and the charge and discharge bin values must equal the to-

tal current throughput at the respective checkup test. Finally, assuming a similarly

distributed cell degradation within a battery, we scale the resulting drive-data vari-

ables from cell level up to a 48 V battery level by considering the connection topol-

ogy. To account for a series connection, the energy throughput and voltage

variables are multiplied by the number of connected cells.

Figure 3 illustrates the distribution of the SOH of the field data and laboratory tests,

as well as distribution diagrams of histogram data. In that respect, the solid lines
8 Cell Reports Physical Science 4, 101596, October 18, 2023



Figure 4. Feature extraction framework

At first, the collected laboratory aging data are transformed into the driving data format of the field data. After data augmentation through functional

fitting, correlation matrices are merged for the feature extraction process to generate the final aging features.
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represent the mean of available data, and the filled areas indicate the range where

50% of considered data points reside. As shown, the majority of field data vehicles

have, in general, high SOH values due to a high percentage of new vehicles in the

fleet. The same applies to SOC and temperature counter histograms, where cycle

tests show higher distribution values. In contrast, selected vehicles with more than

3 years in the field show significantly lower SOH values, which peak at around 85%

SOH. However, the charge throughputs are still relatively low compared with the

cycle test data, but therefore, the time counts of SOC histograms are in comparable

value ranges. Thus, calendar aging has been dominant for the battery degradation

of those vehicles. The separate distribution plots for each respective group are

shown in Figure S1.
Feature extraction framework

The feature extraction framework is designed to combine the advantages of field

and laboratory data. For this, it employs field data readouts from 600,000 customers

(see ‘‘Field data’’) and laboratory data from cell-aging tests. The workflow of the

framework is illustrated in Figure 4. To join benefits from both data sources, the lab-

oratory data (see ‘‘Laboratory data’’) are transformed into the driving data format

first. Afterward, a data augmentation step is applied to improve the information

content of compressed histogram formats by approximating the true histogram

distribution. Finally, the feature extraction procedure selects aging features based

on the aging correlations of the laboratory data and additionally identifies redun-

dancies among input features from correlations of the field data. For validation,

we compare a state-of-the-art feature filter for the given data with our improved filter

and also analyze performance increase by the functional fitting of the histo-

gram data.
Cell Reports Physical Science 4, 101596, October 18, 2023 9
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Figure 5. Correlation analysis

(A) Difference in correlation matrices of field and laboratory data for the top eight features, f0–f7,

with the highest difference with regard to the SOH correlation.

(B) Correlation matrices for laboratory (botthom-left triangle) and field (top-right triangle) data. See

Table 2 for the feature descriptions.

ll
OPEN ACCESS Article
As a starting point, we compute the Spearman correlation matrix from Equation 14

to analyze dependencies between features and the SOH and also among the fea-

tures themselves. The resulting correlation coefficients shall provide insight into

the statistical distinction between the field and the transformed laboratory data

since both data sources fundamentally differ by operating mode and SOH accuracy.

On one hand, field data are characterized by realistic load points from customer

behavior along with onboard SOH estimations of varying BMS software, while labo-

ratory data are measured under controlled conditions and specific test designs.

Therefore, the dependencies between features, as well as between the SOH and

the features, are likely to be different. To contrast the correlations of field and labo-

ratory data, we compute the absolute difference of both matrices, which is illustrated

in Figure 5A for the top eight features, f0–f7, with the highest difference with regard

to the SOH correlation. The correlation coefficients of the same features can be seen

in Figure 5B for the laboratory data in the bottom-left triangle and for the field data in

the top-right triangle. Further, a description of features f0–f7 is listed in Table 2.

It shows that for features f0–f3 correlation differences can be found in high temper-

ature ranges above 70�C because such temperatures very rarely occur in the field,

and thus a valid statistical dependency on SOH is not present. However, the labora-

tory test matrix covers a wider temperature window and, therefore, contains the

required information to draw the statistical influence on the SOH. From the upper

triangle in Figure 5B, it can be seen that the correlation coefficient between f0

and SOH in the field data even has a positive value, 0.4, which would imply an

increasing SOH when the battery resides between 90% and 100% SOC with a tem-

perature over 70�C. In contrast, the lower triangle of Figure 5B shows a clear

negative correlation between f0 and the SOH from the laboratory data, which

matches battery degradation theory. Considering dependencies among features,

the correlation from f0 and f2 shows a difference of 1 between the field and the lab-

oratory data. Since charging of the battery (f2) happens very likely when the battery

is between 90% and 100% (f0) in the same temperature window, it can be concluded

that the missing dependency in the laboratory data is due to a lack of operating

modes. In conclusion, the correlation matrices show on one hand inaccurate corre-

lation coefficients between features and the SOH in the field data and on the other

missing dependencies among features due to a limited range of battery usage

patterns.
10 Cell Reports Physical Science 4, 101596, October 18, 2023



Table 2. Top eight features with the highest SOH correlation difference between field and laboratory data

Label Feature D correlation

f0 time (s) when SOC is between 90% and 100% and temperature is above 70�C 1.35

f1 time (s) when SOC is between 60% and 70% and temperature is above 70�C 0.64

f2 charge count (Ah) when the temperature is above 70�C 0.51

f3 time (s) when SOC is between 30% and 40% and temperature is above 70�C 0.43

f4 time (s) when SOC is between 10% and 20% and temperature is between 55�C and 70�C 0.35

f5 time (s) when SOC is between 20% and 30% and temperature is between 55�C and 70�C 0.35

f6 time (s) when SOC is between 0% and 10% and temperature is between 55�C and 70�C 0.33

f7 charge count total (Ah) 0.33
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To automatically select the most relevant features for a data-driven aging estimation

task, correlation-based methods are common in the literature. Therefore, a high

absolute correlation between SOH and a feature indicates a strong influence of

that feature on battery aging, while a high correlation between a pair of features in-

dicates information redundancy (collinearity). Hamar et al.19 employ the Pearson

correlation coefficient as a measure to select important aging features but also to

mitigate collinearity by selecting highly correlated features with the SOH and dis-

carding one feature from each collinear pair. However, this method captures the

statistical information of only the most relevant feature within a correlated group

and ignores potentially crucial data from the discarded features. As a remedy, we

apply a correlation-based feature-grouping algorithm (see experimental proced-

ures) where we select the highest correlated aging feature from the laboratory

data correlation matrix and, in turn, allocate features that are correlated to the aging

feature from the field data correlation matrix. Afterward, we compress the data of

each feature group using the PLS method and thereby extract the most significant

data from the entire feature group with regard to the aging estimation task. More-

over, we account for valid SOH correlations from the laboratory data and also inte-

grate real customer behavior operating modes from the field data.

The clustering process produces a total of 12 feature groups, each containing a vary-

ing number of features, ranging from 1 to 21. As an example, Figure 6A shows three

selected feature groups, f0x–f2x, of the field data from the correlation clustering pro-

cess. The given correlation coefficients quantify the relationship between a feature

and the SOH in red and the collinearity among features in blue. As can be seen,

the number of correlated features n can vary between feature groups. A description

of each feature, f0x–f2x, can be found in Table S3. The relevant information concern-

ing aging degradation can now be compressed by applying the PLSmethod on each

feature group and transforming the n-dimensional feature matrix into a one-dimen-

sional significant feature vector. Figure 6B shows the reduced feature groups pls0–

pls2 after applying the PLS method. Since only important information regarding the

regression problem has been extracted from each feature group, the resulting aging

correlation coefficients are equal to or higher than the correlation of the original

feature groups. From Figure 6B it can be seen that the aging correlation increases

between 0% and 9% from the initial features f0x–f2x to the transformed pls0–pls2.

Furthermore, an increased number of features within a feature group does not

necessarily result in a higher aging correlation, as observed between the com-

pressed features pls0 and pls2 in Figure 6B. While the four features of group f2x

do not offer additional information to better explain the SOH, the two features in

f0x contribute to a higher aging correlation after the PLS. Hence, the method not

only reduces the overall feature dimension of the input data but, at the same

time, ensures preservation of relevant data.
Cell Reports Physical Science 4, 101596, October 18, 2023 11
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Figure 6. Improved correlation filter

See Table S3 for a description of each feature f0x–f2x.

(A) Three selected correlated feature groups were extracted from the field data. Correlation

coefficients in blue quantify the collinearity among features and coefficients in red determine the

relationship to the SOH.

(B) Resulting features after applying the one-dimensional PLS method on the feature groups.

Correlation coefficients to the SOH are equal to or higher than the original coefficients of the

respective feature group.
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In the case of employing aggregated data for regression problems, it is important to

note that histogram bin values have limitations in accurately capturing the true

underlying distribution of the actual histogram data. Instead, they provide discrete

values of accumulated counters. More importantly, wide bin ranges cause a loss of

input data, whichmight be crucial for the regression problem. As a remedy, we apply

a functional fitting algorithm to characterize the underlying distribution of histogram

data using the superposition of elementary distribution functions as provided in the

experimental procedures. Therefore, we superimpose as many elementary pseudo-

Voigt functions as the number of peaks that have been detected in the linear histo-

gram distribution. Since a histogram variable with n bins can have a maximum of n�
1 peaks and the elementary pseudo-Voigt (pV) function takes four arguments, we

obtain a maximum of 3n � 4 augmented features from the fitting process.

Figure 7 illustrates three histogram variable distributions with different numbers of

detected peaks and elementary pV functions. As can be seen, to capture accurately

the underlying distribution of the time soc x histogram, four pV functions are

required, whereas for the time temperature x as well as the charge temperature x,

one pV function is sufficient due to only oneglobalmaximum in the distribution. Since

histogram distributions are not symmetrical around peaks, fit function means do not

necessarily match their exact position. Each individual fitting computation requires

0.03 s, leading to a cumulative computation time of 74 h for a total of 8.9million read-

outs. For our study, we use distributed executors in a cluster architecture to apply the

data augmentation step, reducing the computation time to 12 h.
12 Cell Reports Physical Science 4, 101596, October 18, 2023
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Figure 7. Pseudo-Voigt fit for three histogram variables

The number of elementary pV curves is determined by the number of local maxima (peaks) in the linear histogram distribution curve.

(A) Functional fit of SOC histogram using four pV curves.

(B) Functional fit of temperature histogram using one pV curve.

(C) Functional fit of charge histogram using one pV curve.
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Validation

We apply the above feature extraction framework on the field and laboratory data

and train a fully connected benchmark neural network, which consists of three hidden

layers, to validate our methods. Moreover, we apply a basic correlation filter, which

selects features with the highest correlation to the SOH, to assess the performance

of our framework. For the network training, we split the laboratory data into 80%

training and 20% test data and employed the Adam algorithm to optimize the

weights of the network using a constant learning rate of 10�3 over 1,000 epochs.

Moreover, wedefine anearly stop criterion to abort the trainingprocess once the vali-

dation loss has not increased over 15 epochs to prevent overfitting. For each feature

extraction method, we ran the training procedure five times and selected the best

andworst results with regard to the testmean squared error (MSE). Figure 8 illustrates

the network estimations of the laboratory SOH when using the basic correlation filter

versus the improved correlation filter directly on the histogram variables and also

when applying the functional fitting data augmentation approach.

In Figures 8A–8C, the estimation error is particularly high in lower SOH ranges,mainly

because there are fewer data points available in those regions. As can be seen, the

functional fitting data augmentation leads to a better model performance for both

correlation filter methods, with a best-case improvement of 60% for the basic and

20% for the improved correlation methods. However, the functional fitting of

selected features based on the basic correlation filter shows the highest test MSE

(8.16) from all worst-case training runs, indicating a higher sensitivity of themodel to-

ward parameter initialization. Applying the improved correlation filter decreases the

MSE by 46%, from 3.99 to 2.16. The augmented features selected by the improved

correlation filter show satisfying results for both best- and worst-case scenarios.

Furthermore, these features exhibit a reduced estimation error in lower SOH regions.
DISCUSSION

In this work, wepropose and examine a feature extraction framework designed for statis-

tical field data readouts, which systematically automates the selection of aging-related

features for diagnostic tasks. Our approach seamlessly integrates data from laboratory

aging tests and field readouts, synergistically harnessing the strengths of both data sour-

ces. On the one hand, we leverage the precision of SOH values derived from rigorously
Cell Reports Physical Science 4, 101596, October 18, 2023 13
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Figure 8. Feature extraction framework validation with best and worst test MSEs of five training runs

(A) Network estimation using a basic correlation filter directly on the histogram variables.

(B) Network estimation using a basic correlation filter on the functional fitting parameters.

(C) Network estimation using the improved correlation filter directly on the histogram variables.

(D) Network estimation using the improved correlation filter on the functional fitting parameters.
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controlledaging test conditions.On theother hand,we tap into the richnessof real-world

operational modes extracted from the driving behaviors of a substantial cohort of

600,000 customers. Hence, our strategy exploits laboratory data to identify relevant ag-

ing features while concurrently harnessing customer behavior correlations inherent in

field data to cluster akin features and mitigate redundancies in the input information.

In achieving this synthesis, we employ the transformation of measured time-series data

from laboratory tests into the statistical data format characteristic of field data readouts.

The heart of our proposed feature extraction framework hinges on a correlation-based

feature-grouping algorithm complementedby the PLS technique to condense the statis-

tical essenceofakin features concerningSOH.Remarkably, theapplicationofPLS toeach

feature group yields elevated aging correlations for compressed features comparedwith

the original feature group. Furthermore, we introduce an innovative data augmentation

strategy, employing elementary pV functions to aptly characterize the authentic underly-

ing distribution of histogram variables. The final framework decisively enhances model

accuracy by 57% compared with a basic correlation filter. With the rising importance of

field data analysis and high demand for customer-oriented component design, we firmly

believe that our framework not only adeptly tackles estimation challenges posed by sta-

tistical field data but also bridges the gap between field and laboratory data in the realm

of battery aging regression.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be directed to

and will be fulfilled by the lead contact, Valentin Steininger (valentin.steininger@

bmw.de).
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Materials availability

This study did not generate any unique materials.

Data and code availability

The laboratory and field data are kept confidential to protect customer-related sen-

sitive data. All original code has been deposited at Zenodo under https://doi.org/

10.5281/zenodo.8228280 and is publicly available as of the date of publication.

Spearman correlation

After data preparation, a correlation analysis is used to investigate the influence of

input features on the SOH and also the collinearity between the features themselves

to avoid redundancies among inputs. Therefore, we compute the Spearman rank

correlation coefficient rx;y to quantify the monotonic dependency of features x and

y as:

rx;y =
covðRðxÞ;RðyÞÞ

sRðxÞ$sRðyÞ
; (Equation 11)

where covð $Þ denotes the covariance function and s the standard deviation of the

rank variables RðxÞ and RðyÞ.20 The empirical covariance function of two variables

x and y with sample size n is defined as:

covðx; yÞ =
1

n � 1

Xn

i = 1

ðxi � mxÞ $
�
yi � my

�
; (Equation 12)

with m as the sample mean of the respective variable. From an illustrative point of

view, the covariance expresses whether two variables vary in the same direction

from their mean values for all samples i. Now, the correlation coefficient gets normal-

ized using the product of both sample variances and evaluates to 1 only for perfectly

correlated variables where the covariance equals the product of the sample vari-

ances. With that, the correlation coefficient represents the degree of monotonic

relationship between all collected values of two variables. For n features of a dataset,

the correlation matrix P contains the correlation coefficients from all pairwise feature

combinations:

P =

2
664

1 r12 / r1n
r21 1 / r2n
« « 1 «
rn1 rn2 / 1

3
775: (Equation 13)

Considering the fact that, e.g., some batteries age faster due to higher loads or more

extreme temperatures than others, a monotonic dependency over time gets dis-

torted as a consequence of different aging rates. For example, Figure 2 shows the

aging degradation over time of the laboratory data and also the relationship be-

tween the SOH and time. Despite a clear dependency for each individual cell, the

overall correlation evaluates to merely 0.6. Hence, the relationship would not be

adequately quantified. For that reason, we determine the coefficients for each

battery separately and then calculate the mean over all m resulting correlation

matrices:

P =
1

m

Xm
i = 1

Pi: (Equation 14)

Partial least squares (PLS)

PLS is a statistical method designed to deal with the challenges of multicollinearity

and feature reduction for regression problems. With regard to feature reduction, the

more popular approach of principal-component analysis (PCA) is applied to map
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high-dimensional data into the low-dimensional space through linear transformation

andmaximize the variance of the new data during the projection to preserve as much

of the original data as possible.21 Hence, it is an unsupervised technique that does

not consider the predictability of the target variable using the transformed features.

Consequently, in most cases, PCA is not an appropriate feature reduction method

for regression problems, particularly when input features with a low variance corre-

late highly to the target variable.22 As a remedy, PLS transforms the input features by

maximizing the covariance between the target variable and the new features. In the

case of a one-dimensional target variable, the underlying model of PLS is defined as

follows:

X = TPT +E; (Equation 15)

where X is the ðn3mÞ feature matrix, T the ðn3lÞ projection of X for l transformed

features, P the ðm3lÞ so-called loading matrix containing the weights for the linear

transform of X, and E the error matrix. To compute the weights in the loading matrix

P, different algorithms exist, which all aim to maximize the covariance between the

target variable Y and the feature transform T.23 In this work, we group input features

that have a collinearity of greater than 0.9 and apply the PLS method to obtain one

resulting input feature. To transform the grouped feature matrix Fg into one feature

vector fg, we compute:

fg = Fgp; (Equation 16)

with p as the ðm31Þ loading matrix computed from the feature group. With regard

to aging estimation, we apply the following algorithm to structure our input features:

(1) Select the feature with the highest absolute Spearman correlation coefficient

(>0.8) to the SOH from the laboratory correlation matrix.

(2) Allocate remaining features that have strong collinearity (>0.9) to the aging

feature from the field correlation matrix.

(3) Compress the feature group using the PLS method.

(4) Repeat for all remaining input features.

With this algorithm, we reduce the number of collected input features from customer

data on one hand and create a stable, uncorrelated regression input feature set on

the other. Since we take correlations from the laboratory data to identify feature cor-

relations to the SOH from accurate measurements and also correlations from

customer behavior in the field data to detect collinearity among input features, we

combine advantages from both data sources to construct features from the input

data. Moreover, since PLS accounts for the regression problem, we compress the

most relevant information from redundant feature groups without discarding impor-

tant data for the aging estimation process.
Functional fitting

To describe the underlying distribution of histogram variables, we apply a functional

fitting algorithm using the superposition of elementary distribution functions. There-

fore, we use the pV function, a convolution of the Gaussian functionGðxÞ and Lorent-

zian function LðxÞ with a weighting factor a given as follows:

pVðxÞ = ð1 � aÞ$GðxÞ+a$LðxÞ: (Equation 17)

Both functions share three parameters, comprising the amplitudeA, the mean m, and

the standard deviation s. The equation of the pV is thus defined as:
16 Cell Reports Physical Science 4, 101596, October 18, 2023
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pVðx;A;m;s;aÞ =
ð1 � aÞ$A
s$

ffiffiffiffiffiffi
2p

p $e
�ðx�mÞ2

2$s2 +
a$A

p
$

s

ðx � mÞ2+s2
: (Equation 18)

Figure 3 shows that histogram variable distributions can have multiple local maxima.

Hence, the number of pV curves required to fit a histogram-based functional curve

equals the number of local peaks detected in the histogram curve. To detect peaks

in the functional curve, the gradient is evaluated and checked for a plateau followed

by a strict fall, indicating a local peak in the curve. With that, the final functional curve

to fit the histogram distribution with n peaks is defined as follows:

ffit =
Xn

i = 1

pVðx;Ai;mi;si;aiÞ: (Equation 19)

The typical approach for performing the fitting operation to determine the 4n

parameters is through the least-squares method, where the curve-fit solution of

overdetermined systems is approximated by minimizing the sum of the squares of

the residuals for every equation. In this work, functional components must be under

certain constraints on mean and amplitude coefficients to avoid overshooting or

overlapping between curve components. As a result, this work uses the trust region

reflective (TRR) method to minimize the least-square error in successive iterations to

achieve the best quality fit.
Neural networks

Neural networks are data-based models that have been originally inspired by the

human brain, specifically the input-output structure of their smallest entity, the

neuron. The network training, an iterative optimization algorithm where the neuron

parameters (weights) are adapted based on the estimation error, resembles the pro-

cess of learning from experience. The layers of a network serve as the topologic

units, and their structure significantly determines the level of abstraction and

complexity the network is able to provide. Therefore, the input layer takes the pre-

processed data and forwards it to the hidden layers whose neurons apply a transfor-

mation function on the layer inputs. Mathematically, for a neuron j˛ f0;1;.; Jg with
n inputs in a hidden layer l˛ f0;1;.;Lg, the transformation behind the propagation

from one unit to another can be formulated as:

zj;l =
Xn

i = 1

wðiÞ
j;l $ h

ðiÞ
j;l� 1 +bj;l; (Equation 20)
hj;l = al
�
zj;l

�
; (Equation 21)

where w, b, and a are the weight of the neuron, the bias factor, and the activation

function, respectively. The sensitivity of the neuron toward an input is determined

by the value of the respective weight wðiÞ. To ensure universal function approxima-

tion of the network, a nonlinear activation function retransforms the output zj;l of

the linear combination. The output hj;l is then passed to the neurons of the next layer,

which again apply the transformation using their weights and bias values. In this

work, we use a fully connected network, where each neuron of a layer is connected

to all neurons of the next layer and a rectified linear unit (relu) as the activation func-

tion. The model architecture consists of three hidden layers with 16, 64, and 1

neuron, respectively.

For model training and validation, we compute the MSE to quantify the deviation

between model estimation by and actual values y as follows:
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MSE =
1

n

Xn

i = 1

ðyi � by iÞ2; (Equation 22)

where yi represents an SOH value from the laboratory data and by i an estimation from

the network given a respective feature extraction method.
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15. Steininger, V., Hüsson, P., Rumpf, K., and
Sauer, D.U. (2023). Customer-centric aging
simulation for 48 V lithium-ion batteries in

https://doi.org/10.1016/j.xcrp.2023.101596
https://doi.org/10.1016/j.xcrp.2023.101596
https://doi.org/10.1021/acsenergylett. 0c02584
https://doi.org/10.1021/acsenergylett. 0c02584
https://doi.org/10.1016/j.xcrp.2022.101095
https://doi.org/10.1016/j.xcrp.2022.101095
https://doi.org/10.1016/j.energy.2018.10.133
https://doi.org/10.1016/j.energy.2018.10.133
https://doi.org/10.1016/j.xcrp.2022.101023
https://doi.org/10.1016/j.xcrp.2022.101023
https://doi.org/10.1109/ICSTC.2016.7877354
https://doi.org/10.1109/ICSTC.2016.7877354
https://doi.org/10.1016/j.microrel. 2018.03.015
https://doi.org/10.1016/j.microrel. 2018.03.015
https://doi.org/10.1016/j.jpowsour.2022.231110
https://doi.org/10.1016/j.jpowsour.2022.231110
https://doi.org/10.1016/j.joule.2021.11.006
https://doi.org/10.1016/j.joule.2021.11.006
https://doi.org/10.1109/TII.2021.3106593
https://doi.org/10.1109/TII.2021.3106593
https://doi.org/10.1016/j.jpowsour.2022.231127
https://doi.org/10.1016/j.jpowsour.2022.231127
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
http://refhub.elsevier.com/S2666-3864(23)00404-6/sref11
https://doi.org/10.3390/batteries5040064
https://doi.org/10.3390/batteries5040064
https://doi.org/10.1016/j.rser.2020.110015
https://doi.org/10.1016/j.rser.2020.110015
https://doi.org/10.1016/j.est.2020.101252
https://doi.org/10.1016/j.est.2020.101252


ll
OPEN ACCESSArticle
vehicle applications. eTransportation 16,
100240. https://doi.org/10.1016/j.etran.2023.
100240.

16. Bank, T., Klamor, S., and Sauer, D.U. (2020).
Lithium-ion cell requirements in a real-world
48 V system and implications for an
extensive aging analysis. J. Energy Storage
30, 101465. https://doi.org/10.1016/j.est.2020.
101465.

17. Bank, T., Feldmann, J., Klamor, S., Bihn, S., and
Sauer, D.U. (2020). Extensive aging analysis of
high-power lithium titanate oxide batteries:
Impact of the passive electrode effect. J. Power
Sources 473, 228566. https://doi.org/10.1016/j.
jpowsour.2020.228566.

18. Richardson, R.R., Osborne, M.A., and Howey,
D.A. (2019). Battery health prediction under
generalized conditions using a Gaussian
process transition model. J. Energy Storage 23,
320–328. https://doi.org/10.1016/j.est.2019.
03.022.

19. Hamar, J.C., Erhard, S.V., Canesso, A.,
Kohlschmidt, J., Olivain, N., and Jossen, A.
(2021). State-of-health estimation using a
neural network trained on vehicle data.
J. Power Sources 512, 230493. https://doi.
org/10.1016/j.jpowsour.2021.230493.

20. Makowski, D., Ben-Shachar, M., Patil, I., and
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